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Examining Uncertainty in Demand Response Baseline Models and
Variability in Automated Responses to Dynamic Pricing

Johanna L. Mathieu, Duncan S. Callaway, and Sila Kiliccote

Abstract

Controlling electric loads to deliver power system services presents a number of interesting challenges. For example,changes
in electricity consumption of Commercial and Industrial (C&I) facilities are usually estimated using counterfactualbaseline
models, and model uncertainty makes it difficult to precisely quantify control responsiveness. Moreover, C&I facilities exhibit
variability in their response. This paper seeks to understand baseline model error and demand-side variability in responses to
open-loop control signals (i.e. dynamic prices). Using a regression-based baseline model, we define several Demand Response
(DR) parameters, which characterize changes in electricity use on DR days, and then present a method for computing the error
associated with DR parameter estimates. In addition to analyzing the magnitude of DR parameter error, we develop a metric to
determine how much observed DR parameter variability is attributable to real event-to-event variability versus simply baseline
model error. Using data from 38 C&I facilities that participated in an automated DR program in California, we find that DR
parameter errors are large. For most facilities, observed DR parameter variability is likely explained by baseline model error,
not real DR parameter variability; however, a number of facilities exhibit real DR parameter variability. In some cases, the
aggregate population of C&I facilities exhibits real DR parameter variability, resulting in implications for the system operator
with respect to both resource planning and system stability.

I. INTRODUCTION

We have traditionally relied upon the supply-side for powersystems services; however, in recent years we have begun to
rely more upon the demand-side, with commercial buildings and industrial (C&I) facilities participating in demand response
(DR) programs. This shift results in a number of interestingchallenges. While it is simple to measure control response
of a power plant, the control response of a C&I facility is usually estimated using a baseline model that has uncertainty,
which makes it difficult to determine exactly how much power is shed during a DR event. Moreover, while traditional power
plants respond to control signals predictably and repeatably, C&I facilities can exhibit variability in their response. These
two issues are illustrated in Fig. 1. In this figure, we plot the actual and baseline-predicted load for an office building on two
DR event days (referred to as ‘DR days’) and one normal day during the summer of 2007. The left and middle plots show
that responses to DR signals can be variable, while the rightplot demonstrates baseline model error. Without quantifying
the baseline model error, it is difficult to determine if the observed variability in response is a result of real variability in
DR behavior (e.g., building managers/occupants overriding pre-programmed DR strategies; broken equipment; variability in
response as a function of occupancy, weather, etc.) or simply unmodeled load variability (i.e. model error).

The purpose of this paper is to understand how power from grid-interactive C&I facilities varies in response to open-loop
control signals, and what that implies for the system operator, which is tasked with matching supply and demand in real
time. Specifically, we aim to understand how much observed variability is attributable to control response variabilityversus
unmodeled load variability. If all observed variability resulted from unmodeled load variability, the system operator could
expect consistent DR behavior and would only need to deal with the usual amount of demand-side variability. However, if
control response variability is present, the system operator may need to deal with more demand-side variability than usual,
requiring additional power systems services (e.g., reserves). In extreme cases, control response variability could result in
area control error (ACE) and system stability issues.
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Fig. 1. Actual and baseline-predicted demand for an office building on three different days during the summer of 2007. Theleft and middle plots show
data from DR events days (the difference between the actual and the baseline prediction is a combination of the control response to the DR signal and
model error), while the right plot shows data from a normal day (the difference between the actual and the baseline prediction is model error).



TABLE I

NUMBER OF FACILITIES BY YEAR AND TYPE.

Office Buildings Prisons & Jails Manufacturing Facilities Retail Stores Retail Stores with PVa Museums TOTAL
2006 (Zone 1) 3 0 0 1 0 0 4
2006 (Zone 2) 6 1 0 1 0 1 9
2007 7 1 1 3 1 1 14
2008 12 1 8 2 3 1 27
2009 17 3 8 1 3 1 33
TOTAL 45 6 17 8 7 4 87

aRetail stores with solar photovoltaics (PV).

In order to analyze variability, we must first compute the error associated with DR parameter estimates (e.g., demand
shed estimates). It is uncommon to conduct detailed error analyses on DR baseline models. In Section IV, we reference a
few studies that have attempted to estimate baseline model error; however, all employ methods that underestimate the true
error. Moreover, none of the studies present errors associated with DR parameter estimates. Therefore, we have developed
a method to compute error estimates associated with DR parameter estimates. We use this method and data from 38 C&I
facilities that participated in an automated DR program in California to understand DR parameter variability.

A note on terminology: The DR community uses several different terms to denote the counterfactual power usage on DR
days: baselines, predictions, and forecasts. In this paper, we use the term ‘baseline predictions’ to refer to ex-post estimates
of counterfactual power usage computed with regression parameters (identified with historical demand/temperature data) and
actual temperature data for the purpose of Measurement and Verification (M&V). We reserve the term ‘forecast’ for ex-ante
estimates computed withforecasted temperature data, which we do not discuss in this paper. We use the term ‘DR parameter
estimates’ to refer to values, such as demand sheds, computed with actual demand data and baseline predictions. The DR
community often refers to these values as ‘DR calculations’; however, we prefer our terminology because it makes clear
that the values are uncertain. The term ‘DR parameter estimates’ should not be confused with ‘DR estimates,’ engineering
estimates of expected demand sheds.

The rest of this paper is organized as follows: In Sections IIand III, we describe our data and baseline model. In Section IV,
we explain our error analysis. Then, in Section V, we presentour results and discussion with respect to baseline model error
and DR parameter variability. Lastly, in Section VI, we conclude.

II. DATA

We use 15-minute interval whole building electric load datafrom 38 large C&I facilities in California that participatied
in Pacific Gas and Electric Company’s (PG&E’s) Automated Critical Peak Pricing (CPP) Program between 2006 and 2009.
PG&E called CPP DR events on up to 12 summer weekdays per year when system-wide load was expected to be high,
which, in California, usually occurs on hot summer days as a result of air conditioning. On DR days, electricity prices were
raised to three times the normal price from 12 to 3 pm (moderate price period), and five times the normal price from 3 to 6
pm (high price period). These prices were fixed (i.e. not modified in response to changes in load), and so they were a form
of open loop control.

In exchange for participating in the program, facilities paid lower energy prices on non-DR days. All 38 facilities usedthe
Open Automated Demand Response (OpenADR) Communication Specification [1] to receive DR event notifications, which
were provided by 3 pm the business day before the event. Each facility implemented a different set of pre-programmed DR
strategies and executed the same strategies from event-to-event. Strategies included changes to the heating, ventilation, and
air conditioning (HVAC) system, light dimming/switching,and industrial process shedding [2].

In 2006, DR events were called separately in two geographic zones; nine were called in Zone 1 and eleven in Zone 2. In
both 2007 and 2009, twelve events were called, while in 2008 eleven events were called. Several facilities participatedin
only a portion of the DR events in a year. If we knew that a facility did not participate in a certain DR event, we did not
analyze data from that DR day.

Facilities’ demand profiles change year-to-year due to equipment upgrades, changes in usage patterns, etc. To reduce the
chance of creating baseline models with data from before andafter significant structural changes only one year worth of
data were used to create each model. In total, we have 87 facility-years worth of data (Table I), where a facility-year is
defined as one year of data for one facility. Twelve facility-years of available data were not analyzed because of significant
structural changes visible in the data.

To create the aggregate populations, we excluded facilities that did not participate in all of the DR events in a year and
facility-years for which we were missing more than one week of data. In sum, nine facility-years were not included in the
aggregate populations (hence the discrepancy in number of facilities between Tables I and IV). All aggregate results are
computed from baseline models built with the aggregate data, not the aggregate output of individual baseline modes.



From the National Climatic Data Center [3], we acquired hourly outdoor air temperature data for each facility from the
nearest weather station. Unfortunately, some of the temperature data are spotty. We linearly interpolated the data to assign
an approximate temperature to every 15-minute interval, though when six or more hours of data are missing we do not
interpolate. In some cases, when the data for a station were particularly spotty, we have filled the holes with data from
another nearby station. Temperature data for the aggregatepopulations were generated by weighting and averaging data
from the individual stations. We weighted the data by the number of facilities in the aggregate population associated with
that station.

III. BASELINE MODEL & DR PARAMETERS

Electric load baseline models are used for different purposes depending upon the type of DR program: demand/capacity
bidding programs use baseline models to compute financial settlements, while dynamic pricing programs, such as PG&E’s
CPP Program, use baseline models primarily for M&V. Electric utilities generally use simple baseline models, many of which
involve averaging the daily electric demand over several days (e.g., those with the highest energy usage) before the DR day
[4], [5]. More accurate regression-based baseline models,which have long been used for M&V by the energy efficiency
community [6], [7], [8], are increasingly used for DR M&V [4], [5], [9], [10]. More sophisticated baseline modeling methods
(e.g., neural networks) have been proposed, but are seldom used in practice.

We use the regression-based baseline model described in [11] because it performs similarly to or better than most baseline
models commonly used for DR M&V. Therefore, our assessment of the magnitude of baseline model error is conservative.
Another advantage to using a better baseline model is that itallows us to better determine if a facility exhibits real variability
in its response to a DR event.

A brief description of the baseline model is as follows: We expect demand to be a function of time-of-week. Regression
coefficients,αi, are assigned to each each 15-minute interval from Monday toFriday, ti wherei = 1...480. We also expect
demand to be a piecewise linear and continuous function of outdoor air temperature,T , as described in [6], [7]. Observed
temperatures are divided into six equal-sized temperaturebins1 and a regression coefficient,βj wherej = 1...6, is assigned to
each bin. Each coefficient is multiplied by a temperature componentTc,j, computed fromT , as described in [11]. We model
the same temperature effect across all occupied mode hours (transitions between occupied and unoccupied are manually
determined by looking at plots of average daily demand profiles on non-DR days). Estimated occupied mode demand,D̂o

is:

D̂o(ti, T (ti)) = αi +

6∑

j=1

βjTc,j(ti). (1)

We model a different temperature effect across all unoccupied mode hours. Since the facility often experiences a smaller
range of temperatures during unoccupied mode (usually nighttime), we model the temperature effect as linear with only one
regression coefficient,βu, which is multiplied by outdoor air temperatureT . Estimated unoccupied mode demand,D̂u is:

D̂u(ti, T (ti)) = αi + βuT (ti). (2)

Since all 2006-2009 DR days were called May 1 to Sept 30, baseline models were constructed with non-DR day demand
data during the same period. We did not use data from holidays, weekends, or days that appeared to have had power outages
(i.e. days when the minimum power use is less than a percentage of the average minimum daily power use during the
summer) to build the baseline models.

The parametersα, β, and βu are estimated with Ordinary Least Squares (OLS). We use the OLS estimator because,
though it not ‘best’ (in a Gauss Markov sense) due to autocorrelation and hetersocedasticity (see Section IV), it still
produces unbiased regression coefficients [12], [13]. However, the standard errors associated with the regression coefficients
are underestimated, so we do not use them.

The parameter estimates and temperatures on DR days are thenused to predict demand on DR days. Four DR parameters
(Table II), computed from the baseline predicted demand andthe actual demand, are used to characterize changes in electricity
use on DR days. These parameters were first defined in [11]; however, here we define Daily Peak Demand and Daily Energy
slightly differently: as absolutes, not percentages.

IV. ERROR ANALYSIS

Most error analyses on regression-based baseline models use the standard errors associated with the regression coefficients
[6], [10], [8]. However, these errors underestimate the true error due to a number of issues. First, the regression parameters
are correlated. Specifically, time-of-week is correlated to temperature: the highest temperatures tend to occur in theafternoon
and the lowest temperatures occur overnight. Second, the regression residuals are autocorrelated. In Fig. 2, we show
autocorrelation functions (ACF) and partial autocorrelation functions (PACF) computed with regression residuals from two

1Through trial and error, six bins were found to allow for enough change points and not cause over-fitting problems. This value is not optimized.



TABLE II

DR PARAMETERS.

Parameter Definition If this value is positive... Importance
Average Demand Shed (kW) Predicted minus actual average

demand during the DR event.a

...the facility reduced power
use during the event.

Key indicator for how well the facility per-
formed.

Rebound (kW) Actual minus predicted average
demand in the hour after the DR
event (6-7pm).

...the facility increased power
use after the event.

Could affect a facility’s demand charges; syn-
chronized rebounds could create a new system-
wide peak.

Daily Peak Demand (kW) Actual minus predicted maxi-
mum demand on the DR day.b

...the facility had a higher de-
mand peak than it would have
if there was no DR event.

Could affect a facility’s demand charges; will
not affect the system-wide peak unless the
individual peaks are synchronized.

Daily Energy (kWh) Actual minus predicted total en-
ergy use on the DR day.

...the facility used more energy
than it would have if there was
no DR event.

Gives us a sense for if energy shifting or
shedding strategies predominate; helps us un-
derstand DR’s effect on energy use and the
environment, a research gap [14].

aThe average demand shed is computed separately for the moderate price period (‘Shed 1’) and the high price period (‘Shed 2’).
bThe actual and the baseline peak could happen at different times during the day.
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Fig. 2. ACF and PACF computed with the regression residuals from an office building (left) and a retail store (right) in 2008. Each line was created with
data from a week (Mon-Fri) in which there were no DR days, holidays, or power outage days. Dashed lines show the 95% confidence interval (±2/

√
n,

wheren is the number of data points in the data set).

facility-years. In both cases, the residuals are lag 1 autocorrelated, which is the case for all facility-years. In somecases,
we find higher order autocorrelation.

Third, the regression residuals are heteroscedastic. Specifically, we find that the variance of the regression residuals
(referred to as the ‘error variance’) is a function of time-of-week. For a typical commercial building, error variance tends to
be lower at night and higher during the day when fluctuating occupancy affects loads. For some facilities, the error variance
is high during transition periods (e.g., when the facility is being populated in the morning). Fig. 3 shows plots, created using
(1) and (2), of error versus time-of-week. For the retail store, error is clearly a function of time-of-week, while for the office
building, the effect is smaller. These results not only demonstrate heteroscedasticity, but also the importance of computing
errors as a function of time-of-week. We have not computed error as a function of temperature or predicted demand because
error does not seem to be a strong function of these variables.

These issues suggest that one should use caution in interpreting the standard errors associated with the baseline model
regression coefficients. Fortunately, we do not need to calculate this in order to calculate the error associated with DR
parameter estimates.

A. Method

The goal of our error analysis is to determine the error associated with each DR parameter estimate for each facility-year
and each aggregate population. Other studies have used regression residuals to generate baseline model error estimates [9];
however, regression residuals are self-influenced: the model is built and tested on the same data set. Therefore, error estimates
generated with regression residuals underestimate the true error.
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Fig. 3. Error versus Time-of-Week for an office building (left) and a retail store (right) in 2008.

To avoid self-influence, we use a resampling technique called ‘Leave One Out Cross Validation’ (LOOCV). LOOCV is a
type of K-fold cross validation, which involves randomly partitioning the data into K subsamples, reserving one subsample,
building the model with data from the remaining subsamples,testing on the reserved subsample, and repeating this process
for all K subsamples. The results for each subsample are combined resulting in an estimate of the prediction accuracy. In
LOOCV, K is equal to the total number of observations,n. LOOCV is useful whenn is small, though the technique is
computationally intensive.

We treat the demand on each non-DR day as an observation. Therefore,n is equal to the number of non-DR days used
to create the baseline prediction model (∼ 90 − 95 days per facility-year). We leave out one non-DR day, build the model
with data from the rest of the non-DR days, predict the demandon the day that has been left out, compute the quantities
associated with the DR parameters (e.g., average demand between 12 and 3 pm), compare the predictions to the actual
quantities to generate an error observation, and repeat foreach non-DR day. Since we consider error as a function of time-
of-week, only residuals computed with data from Mondays areused to determine errors on Mondays, etc. Therefore, for
each DR parameter for each day of week there are only∼ 18 − 20 error observations. It is difficult to determine the true
error distribution with so few error observations. Therefore, we assume that the error observations are normally-distributed
and report error estimates as one standard deviation of the error observations.

We do not recommend using this error analysis method on baseline models parameterized with DR day data (e.g., morning
adjustments [5]). For those models, this method will underestimate true model error if power use outside of the DR period
is affected by the DR signal, which is common, especially forfacilities that pre-cool, rebound, or otherwise shift energy use
to the morning or evening on DR days.

B. Other Sources of Error

Error estimates generated using the method described abovecapture most of the error associated with DR parameter
estimates including demand/temperature measurement error; error resulting from the fact that the weather stations are not
co-located with the facilities; error resulting from temperature data interpolation; and unmodeled load variation ondays
similar to those used to build the baseline model. There are two other sources of error we have not addressed: over-fitting
and extrapolation. DR days are generally called on the hottest days of the summer which means that, in some cases,
baseline predictions are made with temperatures: (1) higher than those on non-DR days, resulting in extrapolation error;
and (2) experienced only a few times on non DR-days, resulting in over-fitting error. For 26% of our DR day baseline
predictions, the highest temperature on the DR day is greater than the highest temperature used to build the baseline model.
In a preliminary investigation, we found that model error associated with extrapolated baseline predictions is comparable
to that associated with non-extrapolated baseline predictions. Other baseline models, such as those that model a load as
a purely linear function of temperature and those that use fewer data to build the model, may be more susceptible to
over-fitting/extrapolation error.

V. RESULTS & DISCUSSION

A. DR Parameter Errors

The error analysis method presented in Section IV-A allows us to assign error estimates to DR parameter estimates. In
Fig. 4, we show DR parameter and error estimates for all 2009 facility-years and the 2009 aggregate population. In most
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cases, the error estimates are large relative to the DR parameter estimates. In addition, observed DR parameter variability is
often large. However, given the magnitude of the error estimates, we would expect some observed DR parameter variability.

This interpretation of Fig. 4 illustrates how including error estimates along with DR parameter estimates allows us to
draw the right conclusions from the data. Without error estimates, it would be easy to classify a facility with observed shed
variability as a variable shedder, and, therefore, conclude that such a facility is difficult to control. However, if theerror
associated with that facility’s shed estimates is large, then it is possible that the control response is actually consistent and
we are simply unable to measure the exact response because ofbaseline model error.

There are several other things to learn from Fig. 4. Some facilities that shed power during DR events consume less energy
on DR days, while some do not, meaning that they shift load outside of the DR period. We find that the Daily Peak Demand
is often biased low, because regression-based baseline models tend to under-predict maximum values (i.e. outliers). We also
learn that, for most facilities, when error estimates are large for one DR parameter, they are large for all DR parameters. The
aggregate population results demonstrate that DR works: the aggregated facilities shed power during DR events and reduce
the peak demand on DR days, despite the fact that individual facilities may become peakier. Also, on average, the aggregated
facilities exhibit almost no rebound and save some energy onDR days, indicating that there is some net curtailment–the
facilities do not simply shift all load outside of the DR period.

We do not discuss the statistical significance of the DR parameter estimates because the error estimates are not confidence
intervals. Since a facility’s DR behavior from one DR event to the next is not independent, Bayesian techniques should be
used to not only determine appropriate confidence intervals, but also pinpoint DR parameter estimates. This would involve
pooling information across DR events (i.e. using knowledgeabout a facility’s behavior during one DR event to help us
predict its behavior during another DR event). We do not tackle this here because we are interested in using the error
estimates to assess DR parameter variability, not statistical significance.

B. DR Parameter Variability

Observed DR parameter variability has two possible sources: unmodeled load variability and real parameter variation.For
example, consider the Average Demand Shed. We generally observe shed variability from one DR event to the next. We
would like to know if observed shed variability is a result ofreal shed variability (i.e. a facility curtails a differentamount



from event-to-event) or if it results from unmodeled load variability (i.e. baseline model error). If observed shed variability
results exclusively from unmodeled load variability, thenwe can expect consistent control responses and the system operator
need only deal with the usual level of demand-side variability. If real shed variability exists, the system operator mayrequire
additional reserves to deal with more demand-side variability than usual.

In Section V-B.1, we derive a metric, the Average Demand ShedVariability Metric (SVM), to discern between unmodeled
load variability and real parameter variation. Similar derivations yield metrics for each DR parameter: the Rebound Variability
Metric (RVM), Daily Peak Demand Variability Metric (PVM), and Daily Energy Variability Metric (EVM). In Sections V-B.2
and V-B.3, we present DR parameter variability metric results for the individual facility-years and the aggregate populations,
respectively.

1) SVM Derivation: On a DR day, theObserved Load (OL) is equal to theReal Baseline Load (RBL) minus theReal
Shed (RS):

OL = RBL − RS. (3)

NeitherRBL norRS can be measured.RBL is estimated with thePredicted Baseline Load (PBL). The difference between
RBL andPBL is theUnmodeled Load (UL):

UL = RBL − PBL. (4)

To compute theObserved Shed (OS), thePBL is subtracted from theOL:

OS = OL − PBL = UL − RS. (5)

Our goal is to determine the variance ofRS. Therefore, we take the variance of (5), which results in:

Var(OS) = Var(UL) + Var(RS) − 2Cov(UL, RS). (6)

We can estimate Var(OS) by taking the variance of the9 − 12 observed sheds and Var(UL) by taking the variance of
the ∼ 95 error observations (since DR events can occur on any weekday, error observations are used without regard to
day-of-week). Therefore, we define the shed variability metric (SVM) as:

SVM : = Var(OS) − Var(UL)

= Var(RS) − 2Cov(UL, RS). (7)

While the SVM does not tell us the exact value of Var(RS) due to the complicating covariance term, it does tell us if
real shed variability likely exists or not. Also, since Var(RS) ≥ 0, the SVM may tell us something about the sign of the
covariance term. If the covariance term is positive, then asunmodeled load increases, real shed increases. This could occur
when the equipment that drivesUL is also the equipment that is curtailed. Alternatively, if the covariance term is negative,
then as unmodeled load increases, real shed decreases. Thiscould occur when load is higher than predicted, electricity
consuming services are in high demand, and occupants/building operators override automated DR strategies; or when load
is higher than predicted, the HVAC system is operating at or beyond its maximum capability, and consequently a reduction
in HVAC setpoint has a limited effect.

2) Individual Facility-years: To compare facilities by SVM, we normalize the measurementsof UL and OS such that
Var(UL) = 1. Therefore, the minimum value of SVM is -1 (i.e. when Var(OS) = 0). Each DR parameter variability metric
is normalized similarly.

Histograms showing DR parameter variability metrics for the 87 facility-years are shown in Fig. 5. To understand what
these histograms tell us about real parameter variability,we can compare them to distributions generated for the case when
real parameter variability is zero. If real parameter variability were zero, the covariance term would also be zero, resulting
in a DR parameter variability metric of zero. However, we areunable to compute the ‘true’ values of the DR parameter
variability metrics because we can only estimate observed parameter variance from∼ 11 observations. Assuming that the
observations are normally-distributed, we would expect the distribution of observed parameter variances to follow a scaled
χ2 distribution withN − 1 degrees of freedom [15]:

(N − 1)x

σ2
∼ χ2

N−1
, (8)

wherex is the sample variance,N is the number of observations, andσ2 is the true variance. Therefore, the expected
variability metric distributions for the case when real variability is zero is that given in (8), shifted left by 1 (resulting
from the subtraction of Var(UL) = 1 in (7)). These distributions (forN = 11) are plotted in Fig. 5. One caveat associated
with these results is that we have assumed that we know the ‘true’ value of Var(UL), though, in reality, it is an estimate
(computed from∼ 95 observations). When we normalize the measurements ofUL andOS such that Var(UL)=1, any error
in our estimate of Var(UL) will affect our estimate of Var(OS), which, in turn, affects our estimate of the SVM.
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variability. Disproportionally negative variability metrics result from negative covariance and, subsequently, real parameter variability.

TABLE III

FACILITY -YEARS WITH VARIABILITY METRICS INSIDE AND OUTSIDE THE 95% CONFIDENCE BOUNDS.

Metric Inside Bounds Outside Bounds
Below Above TOTAL

SVM1 65 (75%) 8 (9%) 14 (16%) 22 (25%)
SVM2 62 (71%) 4 (5%) 21 (24%) 25 (29%)
RVM 62 (71%) 2 (2%) 23 (26%) 25 (29%)
PVM 71 (82%) 6 (7%) 10 (11%) 16 (18%)
EVM 69 (79%) 6 (7%) 12 (14%) 18 (21%)

* Percentages do not always add properly due to rounding.

If none of the facility-years exhibited real parameter variability then we would expect only 5% of facilities to fall outside
of the 95% confidence bounds. However, for each parameter, wefind that substantially more than 5% of the facility-years
fall outside of the bounds (Table III). This implies that some facility-years exhibit real parameter variability. Facilities with
disproportionally positive variability metrics likely exhibit real parameter variability. Facilities with disproportionally negative
variability metrics likely exhibit positive covariance and, subsequently, real parameter variability. For the remainder of the
facility-years, any observed parameter variability may simply result from model error and sampling.

Through simulation we find that, in order to achieve the distributions shown in Fig. 5, it is likely that a number of
facility-years have large real parameter variability, while the majority of facility-years have little to no parameter variability.
Also, it is likely that for the vast majority of facility-years the covariance term is positive which implies that as unmodeled
load increases, real shed increases, which is consistent with intuition. Additionally, we find that all combinations ofthe
variability metrics are all positively correlated, with SVM1 and SVM2 being the most correlated (ρx,y = 0.76).



TABLE IV

DR PARAMETER VARIABILITY METRICS COMPUTED FOR THE AGGREGATE POPULATIONS. BOLD VALUES INDICATE P-VALUES ≤0.05.

Year Facilities (Peaka)
Shed 1 Shed 2 Rebound Daily Peak Demand Daily Energy

SVM1 p-value SVM2 p-value RVM p-value PVM p-value EVM p-value
2006 (Zone 1) 4 (2.7 MW) -0.819 (0.01) -0.269 (0.67) 0.077 (0.75) -0.386 (0.47) -0.737 (0.04)
2006 (Zone 2) 8 (8.4 MW) 3.039 (<0.01) 3.399 (<0.01) 1.044 (0.05) 1.131 (0.04) 4.578 (<0.01)
2007 13 (11.7 MW) 0.579 (0.21) -0.117 (0.90) -0.454 (0.32) -0.531 (0.24) -0.210 (0.78)
2008 21 (14.6 MW) -0.210 (0.72) -0.142 (0.86) 1.295 (0.02) -0.217 (0.71) 0.163 (0.62)
2009 32 (26.9 MW) -0.696 (0.03) -0.331 (0.46) 0.304 (0.43) -0.702 (0.04) -0.227 (0.69)

aPeak demand computed for May 1 - Sept 30.

The Federal Energy Regulatory Commission’s (FERC) has called for better understanding of responses to dynamic prices
as a function of customer type [14], so we attempted to disaggregate parameter variability results by facility attributes
including facility type, HVAC system type, DR strategy, andshed size. Results were inconclusive because of the small
number of facility-years in the data set. It was particularly difficult to disaggregate the facilities by DR strategy because
many facilities use more than one strategy. Therefore, we were unable to determine what kinds of facilities have more or
less variable DR parameters. In an effort to do this, we are inthe process of acquiring a larger data set.

3) Aggregate Populations: DR parameter variability metrics for each aggregate population are shown in Table IV. For
each variability metric, we have computed the two-sided p-value under the null hypothesis that there is no real parameter
variability. Therefore, real parameter variability likely exists when p-values are small. Surprisingly, the aggregate populations
exhibit a wide range of variability metrics, similar to thatseen for the individual facility-years. We would expect more real
DR parameter variability in smaller aggregate populations. For example, in 2006 Zone 2 (8 facilities), we find likely real
variability in each DR parameter. However, we also find likely real variability in both the Average Demand Shed 1 and the
Daily Peak Demand in 2009 (32 facilities). Real variabilityin the aggregate could result from unmodeled correlation across
facilities and/or large variable facilities dominating the aggregate results.

VI. CONCLUSIONS

We have developed a method to determine the error associatedwith DR parameter estimates. We find that this error is
often large and so DR parameter estimates reported without error estimates may be misleading. For example, we may classify
a steady shedder as a variable shedder and, therefore, judgethe facility to be poorly controlled when, in fact, baselinemodel
error simply prevents us from measuring consistent sheds. Since DR parameter estimates have error, all calculations derived
with these estimates, including cost effectiveness estimates, also have error. Future research should explore the degree to
which DR parameter error affects cost/benefit analyses on DRprograms and technologies.

We also find that observed DR parameter variability is driven, in large part, by baseline model error. For most facilities,
observed DR parameter variability can likely be explained by baseline model error alone; however, a number of facilities
likely exhibit high variability in control response. In addition, most facilities exhibit a positive correlation between unmodeled
load and real shed.

Variability metrics computed for the aggregate populations show that in some cases the aggregate likely exhibits variability
in control response, which has implications for the system operator. If aggregate control response is not consistent, the system
operator may have to deal with more demand-side variabilitythan exists on non-DR days and, therefore, will need to procure
more power systems services. In extreme cases, control response variability could result in ACE and system stability issues.
More research is needed to understand control response variability in aggregate populations composed of facilities executing
manual DR strategies, as they may exhibit even more variability than populations composed of facilities executing automated
strategies.

The DR signal considered here is open loop (often implemented in the individual facilities as closed-loop indoor air
temperature control). Our results would be different if a closed-loop DR signal were used. Specifically, we would expect
less control response variability, which could mitigate some of the issues we have described. This is an important subject
of future research.
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