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Examining Uncertainty in Demand Response Baseline Models and
Variability in Automated Responses to Dynamic Pricing

Johanna L. Mathieu, Duncan S. Callaway, and Sila Kiliccote

Abstract

Controlling electric loads to deliver power system sersipeesents a number of interesting challenges. For exanipeges
in electricity consumption of Commercial and Industrial&{E facilities are usually estimated using counterfactbalkeline
models, and model uncertainty makes it difficult to pregisghantify control responsiveness. Moreover, C&l falitiexhibit
variability in their response. This paper seeks to undedstzaseline model error and demand-side variability ingrsps to
open-loop control signals (i.e. dynamic prices). Using gression-based baseline model, we define several Demaimabides
(DR) parameters, which characterize changes in elegtiisie on DR days, and then present a method for computing the er
associated with DR parameter estimates. In addition toyaimg the magnitude of DR parameter error, we develop a miri
determine how much observed DR parameter variability isbatable to real event-to-event variability versus siypaseline
model error. Using data from 38 C&l facilities that partiatpd in an automated DR program in California, we find that DR
parameter errors are large. For most facilities, observRdpBrameter variability is likely explained by baseline rlodrror,
not real DR parameter variability; however, a number of lfées exhibit real DR parameter variability. In some casée
aggregate population of C&I facilities exhibits real DR g@aueter variability, resulting in implications for the sgist operator
with respect to both resource planning and system stability

. INTRODUCTION

We have traditionally relied upon the supply-side for posgstems services; however, in recent years we have begun to
rely more upon the demand-side, with commercial buildinys iadustrial (C&I) facilities participating in demand pEmse
(DR) programs. This shift results in a number of interestolgllenges. While it is simple to measure control response
of a power plant, the control response of a C&l facility is altyi estimated using a baseline model that has uncertainty,
which makes it difficult to determine exactly how much powseshed during a DR event. Moreover, while traditional power
plants respond to control signals predictably and repéat@l&| facilities can exhibit variability in their respoles These
two issues are illustrated in Fig. 1. In this figure, we pla #ttual and baseline-predicted load for an office buildimgwmo
DR event days (referred to as ‘DR days’) and one normal dainduhe summer of 2007. The left and middle plots show
that responses to DR signals can be variable, while the plgitdemonstrates baseline model error. Without quamiifyi
the baseline model error, it is difficult to determine if thieserved variability in response is a result of real varigbih
DR behavior (e.g., building managers/occupants ovewigire-programmed DR strategies; broken equipment; véitiali
response as a function of occupancy, weather, etc.) or gimphodeled load variability (i.e. model error).

The purpose of this paper is to understand how power fromigtatactive C&I facilities varies in response to opengoo
control signals, and what that implies for the system operathich is tasked with matching supply and demand in real
time. Specifically, we aim to understand how much observeidbiity is attributable to control response variabilitgrsus
unmodeled load variability. If all observed variabilitystdted from unmodeled load variability, the system operatald
expect consistent DR behavior and would only need to dedl thi¢ usual amount of demand-side variability. However, if
control response variability is present, the system operaty need to deal with more demand-side variability tharaljs
requiring additional power systems services (e.g., resgnin extreme cases, control response variability coeddlt in
area control error (ACE) and system stability issues.
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Fig. 1. Actual and baseline-predicted demand for an offidgkling on three different days during the summer of 2007. Tefeand middle plots show
data from DR events days (the difference between the achdhlttee baseline prediction is a combination of the contrepogse to the DR signal and
model error), while the right plot shows data from a norma} (tae difference between the actual and the baseline pidics model error).



TABLE |
NUMBER OF FACILITIES BY YEAR AND TYPE.

Office Buildings  Prisons & Jails  Manufacturing Facilities etRil Stores  Retail Stores with PV Museums| TOTAL
2006 (Zone 1) 3 0 0 1 0 0 4
2006 (Zone 2) 6 1 0 1 0 1 9
2007 7 1 1 3 1 1 14
2008 12 1 8 2 3 1 27
2009 17 3 8 1 3 1 33
TOTAL 45 6 17 8 7 4 87

“Retall stores with solar photovoltaics (PV).

In order to analyze variability, we must first compute theoemssociated with DR parameter estimates (e.g., demand
shed estimates). It is uncommon to conduct detailed erralya@s on DR baseline models. In Section IV, we reference a
few studies that have attempted to estimate baseline moae} @owever, all employ methods that underestimate the tr
error. Moreover, none of the studies present errors adsdciith DR parameter estimates. Therefore, we have desdlop
a method to compute error estimates associated with DR gdearastimates. We use this method and data from 38 C&l
facilities that participated in an automated DR program aiif@rnia to understand DR parameter variability.

A note on terminology: The DR community uses several difieterms to denote the counterfactual power usage on DR
days: baselines, predictions, and forecasts. In this papgeuse the term ‘baseline predictions’ to refer to ex-pstih@ates
of counterfactual power usage computed with regressioanpeters (identified with historical demand/temperatuta)dand
actual temperature data for the purpose of Measurement and VéioficBM&V). We reserve the term ‘forecast’ for ex-ante
estimates computed witiorecasted temperature data, which we do not discuss in this paper. \&/¢hesterm ‘DR parameter
estimates’ to refer to values, such as demand sheds, cothpitte actual demand data and baseline predictions. The DR
community often refers to these values as ‘DR calculationsivever, we prefer our terminology because it makes clear
that the values are uncertain. The term ‘DR parameter esghahould not be confused with ‘DR estimates,” enginegrin
estimates of expected demand sheds.

The rest of this paper is organized as follows: In Sectioasd |1, we describe our data and baseline model. In Section |
we explain our error analysis. Then, in Section V, we presentesults and discussion with respect to baseline modet er
and DR parameter variability. Lastly, in Section VI, we clhuue.

1. DATA

We use 15-minute interval whole building electric load dintan 38 large C&I facilities in California that participet
in Pacific Gas and Electric Company’s (PG&E’s) Automatedi€al Peak Pricing (CPP) Program between 2006 and 2009.
PG&E called CPP DR events on up to 12 summer weekdays per yeam system-wide load was expected to be high,
which, in California, usually occurs on hot summer days assalt of air conditioning. On DR days, electricity pricesrave
raised to three times the normal price from 12 to 3 pm (modgquete period), and five times the normal price from 3 to 6
pm (high price period). These prices were fixed (i.e. not rfediin response to changes in load), and so they were a form
of open loop control.

In exchange for participating in the program, facilitiesdolwer energy prices on non-DR days. All 38 facilities usled
Open Automated Demand Response (OpenADR) Communicatiecifigation [1] to receive DR event notifications, which
were provided by 3 pm the business day before the event. Eadhyf implemented a different set of pre-programmed DR
strategies and executed the same strategies from evenetd- Strategies included changes to the heating, viéoiijaand
air conditioning (HVAC) system, light dimming/switchingnd industrial process shedding [2].

In 2006, DR events were called separately in two geograpiieg, nine were called in Zone 1 and eleven in Zone 2. In
both 2007 and 2009, twelve events were called, while in 2088ee events were called. Several facilities participated
only a portion of the DR events in a year. If we knew that a facilid not participate in a certain DR event, we did not
analyze data from that DR day.

Facilities’ demand profiles change year-to-year due tomgant upgrades, changes in usage patterns, etc. To reduce th
chance of creating baseline models with data from beforeadtsd significant structural changes only one year worth of
data were used to create each model. In total, we have 8Ttyffaelars worth of data (Table 1), where a facility-year is
defined as one year of data for one facility. Twelve faciligars of available data were not analyzed because of sigmific
structural changes visible in the data.

To create the aggregate populations, we excluded fasilitiat did not participate in all of the DR events in a year and
facility-years for which we were missing more than one we&Kata. In sum, nine facility-years were not included in the
aggregate populations (hence the discrepancy in nhumbeaciities between Tables | and V). All aggregate results ar
computed from baseline models built with the aggregate, deththe aggregate output of individual baseline modes.



From the National Climatic Data Center [3], we acquired hpoutdoor air temperature data for each facility from the
nearest weather station. Unfortunately, some of the teatyper data are spotty. We linearly interpolated the datesssiga
an approximate temperature to every 15-minute intervalgh when six or more hours of data are missing we do not
interpolate. In some cases, when the data for a station wateyarly spotty, we have filled the holes with data from
another nearby station. Temperature data for the aggreugelations were generated by weighting and averaging data
from the individual stations. We weighted the data by the benof facilities in the aggregate population associatetth wi
that station.

1. BASELINE MODEL & DR PARAMETERS

Electric load baseline models are used for different pugpaepending upon the type of DR program: demand/capacity
bidding programs use baseline models to compute finandigsents, while dynamic pricing programs, such as PG&E's
CPP Program, use baseline models primarily for M&V. Eleatttilities generally use simple baseline models, many dtiwh
involve averaging the daily electric demand over severgsda.g., those with the highest energy usage) before thed&R d
[4], [5]. More accurate regression-based baseline moaéigch have long been used for M&V by the energy efficiency
community [6], [7], [8], are increasingly used for DR M&V [4]5], [9], [10]. More sophisticated baseline modeling nazth
(e.g., neural networks) have been proposed, but are seldenhin practice.

We use the regression-based baseline model described]ibdtaduse it performs similarly to or better than most baseli
models commonly used for DR M&V. Therefore, our assessméttteomagnitude of baseline model error is conservative.
Another advantage to using a better baseline model is tladlbits us to better determine if a facility exhibits real iadility
in its response to a DR event.

A brief description of the baseline model is as follows: Weent demand to be a function of time-of-week. Regression
coefficients«;, are assigned to each each 15-minute interval from Mond&yittay, t; wherei = 1...480. We also expect
demand to be a piecewise linear and continuous function tfomn air temperaturel’, as described in [6], [7]. Observed
temperatures are divided into six equal-sized temperaing and a regression coefficientt; wherej = 1...6, is assigned to
each bin. Each coefficient is multiplied by a temperaturepomnent’. ;, computed froni", as described in [11]. We model
the same temperature effect across all occupied mode htrarsifions between occupied and unoccupied are manually
determined by looking at plots of average daily demand @®fiin non-DR days). Estimated occupied mode demayd,
is:

6
Do(ti, T(t:)) = ci + Y BT j(t:). 1)
=1

We model a different temperature effect across all unoezipiode hours. Since the facility often experiences a smalle
range of temperatures during unoccupied mode (usuallyttimgt), we model the temperature effect as linear with omig o
regression coefficient3,,, which is multiplied by outdoor air temperatuié Estimated unoccupied mode demand, is:

Du(ti, T(t:)) = i + BuT(t:). )

Since all 2006-2009 DR days were called May 1 to Sept 30, lmeseiodels were constructed with non-DR day demand
data during the same period. We did not use data from holjdesskends, or days that appeared to have had power outages
(i.e. days when the minimum power use is less than a percerthghe average minimum daily power use during the
summer) to build the baseline models.

The parameters,, 3, and 3, are estimated with Ordinary Least Squares (OLS). We use & &timator because,
though it not ‘best’ (in a Gauss Markov sense) due to autetation and hetersocedasticity (see Section V), it still
produces unbiased regression coefficients [12], [13]. Hewehe standard errors associated with the regressidficierts
are underestimated, so we do not use them.

The parameter estimates and temperatures on DR days aragéeéro predict demand on DR days. Four DR parameters
(Table 1), computed from the baseline predicted demandla@dctual demand, are used to characterize changes iricect
use on DR days. These parameters were first defined in [11vewhere we define Daily Peak Demand and Daily Energy
slightly differently: as absolutes, not percentages.

IV. ERROR ANALYSIS

Most error analyses on regression-based baseline modethe@istandard errors associated with the regression depffic
[6], [10], [8]. However, these errors underestimate the teoror due to a number of issues. First, the regression pdeasn
are correlated. Specifically, time-of-week is correlattemperature: the highest temperatures tend to occur iaftesoon
and the lowest temperatures occur overnight. Second, tipegsion residuals are autocorrelated. In Fig. 2, we show
autocorrelation functions (ACF) and partial autocoriielatfunctions (PACF) computed with regression residuadsnfitwo

IThrough trial and error, six bins were found to allow for egbiwchange points and not cause over-fitting problems. THis\ia not optimized.



TABLE Il
DR PARAMETERS.

Parameter Definition If this value is positive... Importanc

Average Demand Shed (kW) Predicted minus actual averagethe facility reduced power Key indicator for how well the facility per-
demand during the DR evefit.  use during the event. formed.

Rebound (kW) Actual minus predicted average..the facility increased power Could affect a facility’s demand charges; syn-
demand in the hour after the DR use after the event. chronized rebounds could create a new system-
event (6-7pm). wide peak.

Daily Peak Demand (kW) Actual minus predicted maxi-...the facility had a higher de- Could affect a facility's demand charges; will
mum demand on the DR ddy. mand peak than it would have not affect the system-wide peak unless the

if there was no DR event. individual peaks are synchronized.

Daily Energy (kWh) Actual minus predicted total en-...the facility used more energy Gives us a sense for if energy shifting or
ergy use on the DR day. than it would have if there was shedding strategies predominate; helps us un-

no DR event. derstand DR’s effect on energy use and the

environment, a research gap [14].

“The average demand shed is computed separately for the at@geice period (‘Shed 1') and the high price period (‘Sh&d 2
bThe actual and the baseline peak could happen at diffemesstduring the day.

ACF ACF
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Fig. 2. ACF and PACF computed with the regression residual® fan office building (left) and a retail store (right) in B)®Each line was created with
data from a week (Mon-Fri) in which there were no DR days,d®s, or power outage days. Dashed lines show the 95% cocéideterval (-2/+/7,
wheren is the number of data points in the data set).

facility-years. In both cases, the residuals are lag 1 autetated, which is the case for all facility-years. In sooases,
we find higher order autocorrelation.

Third, the regression residuals are heteroscedastic.ifiSpdg, we find that the variance of the regression residual
(referred to as the ‘error variance’) is a function of timfeneek. For a typical commercial building, error varianeads to
be lower at night and higher during the day when fluctuatingupancy affects loads. For some facilities, the error vaga
is high during transition periods (e.g., when the facilgybieing populated in the morning). Fig. 3 shows plots, cckating
(1) and (2), of error versus time-of-week. For the retaitest@rror is clearly a function of time-of-week, while fortloffice
building, the effect is smaller. These results not only destiate heteroscedasticity, but also the importance ofpcaimy
errors as a function of time-of-week. We have not computearers a function of temperature or predicted demand because
error does not seem to be a strong function of these variables

These issues suggest that one should use caution in irttegotee standard errors associated with the baseline model
regression coefficients. Fortunately, we do not need toutatke this in order to calculate the error associated with DR
parameter estimates.

A. Method

The goal of our error analysis is to determine the error aggst with each DR parameter estimate for each facility-yea
and each aggregate population. Other studies have usezbségr residuals to generate baseline model error estrifite
however, regression residuals are self-influenced: thesiisduilt and tested on the same data set. Therefore, estionaes
generated with regression residuals underestimate teeetnor.
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Fig. 3. Error versus Time-of-Week for an office building {Jeind a retail store (right) in 2008.

To avoid self-influence, we use a resampling technique délleave One Out Cross Validation’ (LOOCV). LOOCV is a
type of K-fold cross validation, which involves randomlyriioning the data into K subsamples, reserving one supsam
building the model with data from the remaining subsampkesting on the reserved subsample, and repeating thisgzoce
for all K subsamples. The results for each subsample are io@aliesulting in an estimate of the prediction accuracy. In
LOOCYV, K is equal to the total number of observations,LOOCV is useful whemn is small, though the technique is
computationally intensive.

We treat the demand on each non-DR day as an observatioreféresm is equal to the number of non-DR days used
to create the baseline prediction model 0 — 95 days per facility-year). We leave out one non-DR day, build iodel
with data from the rest of the non-DR days, predict the denm@mdhe day that has been left out, compute the quantities
associated with the DR parameters (e.g., average demangdretl2 and 3 pm), compare the predictions to the actual
guantities to generate an error observation, and repeaaitit non-DR day. Since we consider error as a function of-time
of-week, only residuals computed with data from Mondayswsed to determine errors on Mondays, etc. Therefore, for
each DR parameter for each day of week there are enly8 — 20 error observations. It is difficult to determine the true
error distribution with so few error observations. Therefove assume that the error observations are normallgikulistd
and report error estimates as one standard deviation ofrtbe @bservations.

We do not recommend using this error analysis method onibaselodels parameterized with DR day data (e.g., morning
adjustments [5]). For those models, this method will unsiémeate true model error if power use outside of the DR period
is affected by the DR signal, which is common, especiallyféailities that pre-cool, rebound, or otherwise shift gyyeuse
to the morning or evening on DR days.

B. Other Sources of Error

Error estimates generated using the method described ataptare most of the error associated with DR parameter
estimates including demand/temperature measurement error resulting from the fact that the weather statiors ramt
co-located with the facilities; error resulting from temgteire data interpolation; and unmodeled load variatiordaps
similar to those used to build the baseline model. Therewoedther sources of error we have not addressed: over-fitting
and extrapolation. DR days are generally called on the $otdays of the summer which means that, in some cases,
baseline predictions are made with temperatures: (1) higfe those on non-DR days, resulting in extrapolationrerro
and (2) experienced only a few times on non DR-days, resultinover-fitting error. For 26% of our DR day baseline
predictions, the highest temperature on the DR day is gr#ae the highest temperature used to build the baselineeinod
In a preliminary investigation, we found that model erros@sated with extrapolated baseline predictions is coatgar
to that associated with non-extrapolated baseline piedit Other baseline models, such as those that model a kad a
a purely linear function of temperature and those that useifedata to build the model, may be more susceptible to
over-fitting/extrapolation error.

V. RESULTS & DISCUSSION
A. DR Parameter Errors

The error analysis method presented in Section IV-A allowgauassign error estimates to DR parameter estimates. In
Fig. 4, we show DR parameter and error estimates for all 2@0Bit-years and the 2009 aggregate population. In most
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Fig. 4. DR parameter estimates (black) and error estimagey) for all 2009 facility-years. Facilities are arrangedorder of smallest to largest mean
error for Average Demand Shed 1. For each facility and eachpBi@meter, parameters are arranged in order of smalleatgest. Results for the 2009
aggregate population are shown on the right.

cases, the error estimates are large relative to the DR péeamstimates. In addition, observed DR parameter véitiaisi
often large. However, given the magnitude of the error esis, we would expect some observed DR parameter varyabilit

This interpretation of Fig. 4 illustrates how including @rrestimates along with DR parameter estimates allows us to
draw the right conclusions from the data. Without errorreates, it would be easy to classify a facility with observedds
variability as a variable shedder, and, therefore, coreclilit such a facility is difficult to control. However, if thearor
associated with that facility’s shed estimates is largentt is possible that the control response is actually stesi and
we are simply unable to measure the exact response becabssealine model error.

There are several other things to learn from Fig. 4. Somditfasithat shed power during DR events consume less energy
on DR days, while some do not, meaning that they shift loadidetof the DR period. We find that the Daily Peak Demand
is often biased low, because regression-based baselinelsriedd to under-predict maximum values (i.e. outliersg. aéo
learn that, for most facilities, when error estimates argddor one DR parameter, they are large for all DR parameiéns
aggregate population results demonstrate that DR worksagigregated facilities shed power during DR events andceedu
the peak demand on DR days, despite the fact that individieditfes may become peakier. Also, on average, the agtgdga
facilities exhibit almost no rebound and save some energpRndays, indicating that there is some net curtailment-the
facilities do not simply shift all load outside of the DR peti

We do not discuss the statistical significance of the DR patarrestimates because the error estimates are not corgidenc
intervals. Since a facility’s DR behavior from one DR evemtlie next is not independent, Bayesian techniques should be
used to not only determine appropriate confidence interaisalso pinpoint DR parameter estimates. This would weol
pooling information across DR events (i.e. using knowledgeut a facility’s behavior during one DR event to help us
predict its behavior during another DR event). We do not leatkis here because we are interested in using the error
estimates to assess DR parameter variability, not statissignificance.

B. DR Parameter Variability

Observed DR parameter variability has two possible soutgasodeled load variability and real parameter variatkeor.
example, consider the Average Demand Shed. We generalgnabshed variability from one DR event to the next. We
would like to know if observed shed variability is a resultrel shed variability (i.e. a facility curtails a differeamount



from event-to-event) or if it results from unmodeled loadiahility (i.e. baseline model error). If observed shediaitity
results exclusively from unmodeled load variability, thea can expect consistent control responses and the systematop
need only deal with the usual level of demand-side varigblli real shed variability exists, the system operator meguire
additional reserves to deal with more demand-side vaitaliian usual.

In Section V-B.1, we derive a metric, the Average Demand Skathbility Metric (SVM), to discern between unmodeled
load variability and real parameter variation. Similaridations yield metrics for each DR parameter: the Reboundhldity
Metric (RVM), Daily Peak Demand Variability Metric (PVM)na Daily Energy Variability Metric (EVM). In Sections V-B.2
and V-B.3, we present DR parameter variability metric resstdr the individual facility-years and the aggregate dapans,
respectively.

1) SVM Derivation: On a DR day, thébserved Load (OL) is equal to theReal Baseline Load (RBL) minus theReal
Shed (RS):

OL = RBL — RS. 3)

Neither RBL nor RS can be measure®BL is estimated with th@redicted Baseline Load (PBL). The difference between
RBL and PBL is theUnmodeled Load (UL):

UL = RBL — PBL. (4)
To compute theObserved Shed (OS), the PBL is subtracted from th©L:
0S8 =0L—-PBL=UL-RS. (5)

Our goal is to determine the variance BS. Therefore, we take the variance of (5), which results in:
Var(OS) = Var(UL) + Var(RS) — 2Co\(U L, RS). (6)

We can estimate Vaf[S) by taking the variance of theé — 12 observed sheds and Var() by taking the variance of
the ~ 95 error observations (since DR events can occur on any weeledsy observations are used without regard to
day-of-week). Therefore, we define the shed variabilityrindSVM) as:

SVM : Var(OS) — Var(UL)
Var(RS) — 2Cov(UL, RS). (7)

While the SVM does not tell us the exact value of Via() due to the complicating covariance term, it does tell us if
real shed variability likely exists or not. Also, since V&S) > 0, the SVM may tell us something about the sign of the
covariance term. If the covariance term is positive, thenrasodeled load increases, real shed increases. This coclot 0
when the equipment that drivésL is also the equipment that is curtailed. Alternativelyhétcovariance term is negative,
then as unmodeled load increases, real shed decreasescoliisoccur when load is higher than predicted, electricity
consuming services are in high demand, and occupantsfimitgberators override automated DR strategies; or wheth loa
is higher than predicted, the HVAC system is operating ateyohd its maximum capability, and consequently a reduction
in HVAC setpoint has a limited effect.

2) Individual Facility-years. To compare facilities by SVM, we normalize the measurements' L and OS such that
Var(UL) = 1. Therefore, the minimum value of SVM is -1 (i.e. when V@) = 0). Each DR parameter variability metric
is normalized similarly.

Histograms showing DR parameter variability metrics fog 8v facility-years are shown in Fig. 5. To understand what
these histograms tell us about real parameter variabiligycan compare them to distributions generated for the casa w
real parameter variability is zero. If real parameter ity were zero, the covariance term would also be zerayltieg
in a DR parameter variability metric of zero. However, we ar@ble to compute the ‘true’ values of the DR parameter
variability metrics because we can only estimate obsenadmeter variance from 11 observations. Assuming that the
observations are normally-distributed, we would expeetdistribution of observed parameter variances to follovcalesl
x? distribution with N — 1 degrees of freedom [15]:

(N -1z

2
~ 8
o2 XN-1> (8)

where z is the sample variancey is the number of observations, and is the true variance. Therefore, the expected
variability metric distributions for the case when realigaility is zero is that given in (8), shifted left by 1 (refinb
from the subtraction of Vdt/L) = 1 in (7)). These distributions (folN = 11) are plotted in Fig. 5. One caveat associated
with these results is that we have assumed that we know the’ Walue of Var{U L), though, in reality, it is an estimate
(computed from~ 95 observations). When we normalize the measurement&/ofindOS such that Vary L)=1, any error

in our estimate of Varf{ L) will affect our estimate of VAIOS), which, in turn, affects our estimate of the SVM.
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Fig. 5. Histograms showing DR parameter variability meatrior the 87 facility-years. Solid lines show the expectesiritiutions if real parameter
variability were zero andV = 11 (dashed lines show the 95% confidence interval). Disprapally positive variability metrics result from real panater
variability. Disproportionally negative variability nmats result from negative covariance and, subsequenty,parameter variability.

TABLE Il
FACILITY-YEARS WITH VARIABILITY METRICS INSIDE AND OUTSIDE THE 95% CONFIDENCE BOUNDS

. ) Outside Bounds
Metric | Inside Bounds Below Above TOTAL
SVM1 65 (75%) 8 (9%) 14 (16%) 22 (25%)
SVM2 62 (71%) 4 (5%) 21 (24%) 25 (29%)
RVM 62 (71%) 2 (2%) 23 (26%) 25 (29%)
PVM 71 (82%) 6 (7%) 10 (11%) 16 (18%)
EVM 69 (79%) 6 (7%) 12 (14%) 18 (21%)

* Percentages do not always add properly due to rounding.

If none of the facility-years exhibited real parameter ahility then we would expect only 5% of facilities to fall cide
of the 95% confidence bounds. However, for each parametefindehat substantially more than 5% of the facility-years
fall outside of the bounds (Table IlI). This implies that sefacility-years exhibit real parameter variability. Hai@s with
disproportionally positive variability metrics likely gibit real parameter variability. Facilities with dispranionally negative
variability metrics likely exhibit positive covariance @nsubsequently, real parameter variability. For the renhai of the
facility-years, any observed parameter variability map®y result from model error and sampling.

Through simulation we find that, in order to achieve the thstions shown in Fig. 5, it is likely that a number of
facility-years have large real parameter variability, tthe majority of facility-years have little to no parametariability.
Also, it is likely that for the vast majority of facility-yaa the covariance term is positive which implies that as uthehed
load increases, real shed increases, which is consistéhtimtuition. Additionally, we find that all combinations alfie
variability metrics are all positively correlated, with 8\ and SVM2 being the most correlateg,(, = 0.76).



TABLE IV
DR PARAMETER VARIABILITY METRICS COMPUTED FOR THE AGGREGATE PPULATIONS. BOLD VALUES INDICATE P-VALUES <0.05.

Year Facilities (Peak) Shed 1 Shed 2 Rebound Daily Peak Demand Daily Energy
SVM1 p-value | SVM2 p-value | RVM p-value PVM p-value | EVM p-value
2006 (Zone 1) 4 (2.7 MW) -0.819 (0.01) | -0.269 (0.67)| 0.077 (0.75)| -0.386 0.47)| -0.737 (0.049)
2006 (Zone 2) 8 (8.4 MW) 3039 (<001) | 3399 (<001) | 1044  (0.05) | 1.131 (0.04) | 4578 (<0.01)
2007 13 (11.7 MW) 0.579 (0.21)| -0.117 (0.90) | -0.454 (0.32)| -0.531 (0.24)| -0.210 (0.78)
2008 21 (14.6 MW) | -0.210 (0.72)| -0.142 (0.86)| 1.295 (0.02) | -0.217 (0.71)| 0.163 (0.62)
2009 32 (26.9 MW) | -0.696 (0.03) | -0.331 (0.46)| 0.304  (0.43)| -0.702 (0.04) | -0.227 (0.69)

“Peak demand computed for May 1 - Sept 30.

The Federal Energy Regulatory Commission’s (FERC) hasdadtir better understanding of responses to dynamic prices
as a function of customer type [14], so we attempted to disggde parameter variability results by facility attriésit
including facility type, HVAC system type, DR strategy, aslded size. Results were inconclusive because of the small
number of facility-years in the data set. It was particylatifficult to disaggregate the facilities by DR strategy &ese
many facilities use more than one strategy. Therefore, we waable to determine what kinds of facilities have more or
less variable DR parameters. In an effort to do this, we arthénprocess of acquiring a larger data set.

3) Aggregate Populations: DR parameter variability metrics for each aggregate pdjmiaare shown in Table IV. For
each variability metric, we have computed the two-sidedajpie under the null hypothesis that there is no real paramete
variability. Therefore, real parameter variability ligedxists when p-values are small. Surprisingly, the agdesgapulations
exhibit a wide range of variability metrics, similar to thegen for the individual facility-years. We would expect moeal
DR parameter variability in smaller aggregate populatidfee example, in 2006 Zone 2 (8 facilities), we find likely Irea
variability in each DR parameter. However, we also find lkedal variability in both the Average Demand Shed 1 and the
Daily Peak Demand in 2009 (32 facilities). Real variabilitythe aggregate could result from unmodeled correlationsac
facilities and/or large variable facilities dominatingethggregate results.

VI. CONCLUSIONS

We have developed a method to determine the error associdgtiedR parameter estimates. We find that this error is
often large and so DR parameter estimates reported withmrtestimates may be misleading. For example, we may &jassi
a steady shedder as a variable shedder and, therefore,thelégility to be poorly controlled when, in fact, baselmedel
error simply prevents us from measuring consistent shadse ®R parameter estimates have error, all calculationsete
with these estimates, including cost effectiveness estisnalso have error. Future research should explore the@ag
which DR parameter error affects cost/benefit analyses orpigrams and technologies.

We also find that observed DR parameter variability is drivarlarge part, by baseline model error. For most facilities
observed DR parameter variability can likely be explaingdobseline model error alone; however, a number of fadlitie
likely exhibit high variability in control response. In aitidn, most facilities exhibit a positive correlation betan unmodeled
load and real shed.

Variability metrics computed for the aggregate populaishow that in some cases the aggregate likely exhibitshikiya
in control response, which has implications for the syst@erator. If aggregate control response is not consistemsystem
operator may have to deal with more demand-side varialtiiigp exists on non-DR days and, therefore, will need to pecu
more power systems services. In extreme cases, contranesyariability could result in ACE and system stabilityuiss.
More research is needed to understand control responsilidyiin aggregate populations composed of facilities@iing
manual DR strategies, as they may exhibit even more vaitiabiilan populations composed of facilities executing andited
strategies.

The DR signal considered here is open loop (often implengemmtethe individual facilities as closed-loop indoor air
temperature control). Our results would be different if aseld-loop DR signal were used. Specifically, we would expect
less control response variability, which could mitigatensoof the issues we have described. This is an important gubje
of future research.
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